Assignment 4

Hand in no. 5, 6, 10 and 11 by October 3, 2023.

1. Prove Hölder's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1 and q conjugate to p,

$$|\mathbf{x} \cdot \mathbf{y}| \le \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} \left(\sum_{j=1}^n |y_j|^q\right)^{1/q}.$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

2. Prove Minkowski's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1,

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p.$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

3. Prove the generalized Hölder's Inequality: For $f_1, f_2, \dots, f_n \in R[a, b]$,

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n}| dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}}\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}|^{p_{2}}\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n}|^{p_{n}}\right)^{1/p_{n}},$$

where

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} = 1, \quad p_1, p_2, \dots, p_n > 1.$$

4. Show that for $1 \le p < r \le \infty$,

(a)

$$\|\mathbf{x}\|_p \le n^{\frac{1}{p} - \frac{1}{r}} \|\mathbf{x}\|_r ,$$

(b)

$$\|\mathbf{x}\|_r \le n^{\frac{1}{r}} \|\mathbf{x}\|_p.$$

5. Show that for $1 \le p < r \le \infty$, and $f \in C[a, b]$,

$$||f||_p \le (b-a)^{\frac{1}{p}-\frac{1}{r}}||f||_r$$
.

- 6. Show that there is no constant C such that $||f||_2 \le C||f||_1$, for all $f \in C[0,1]$.
- 7. Show that $\|\cdot\|_p$ is no longer a norm on C[0,1] for $p \in (0,1)$.
- 8. In a metric space (X, d), its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_∞ and d_1 on \mathbb{R}^2 .
- 9. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, d(x, y) = 1 if $x \neq y$.

10. Consider the function Φ defined on C[a, b]

$$\Phi(f) = \int_a^b \sqrt{1 + f^2(x)} \ dx.$$

Show that it is continuous in C[a, b] under both the support and the L^1 -norm.

11. Consider the function Ψ defined on C[a,b] given by $\Psi(f)=f(x_0)$ where $x_0 \in [a,b]$ is fixed. Show that it is continuous in the supnorm but not in the L^1 -norm. Suggestion: Produce a sequence $\{f_n\}$ with $||f_n||_1 \to 0$ but $f_n(x_0) = 1$, $\forall n$. Ψ is called an evaluation map.